
 
UNIT 2: Binomial Theorem for Positive Integral Indices 
Specific Objectives: 
1. To recognize the notations n! and .  n

rC
2. To learn to expand a binomial with positive integral index by the binomial theorem.  
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2.1 The n! and notations
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2.2 The Pascal Triangle 
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   The definitions of n! and should be introduced. The idea of permutation 
and combination may only be mentioned to abler students. The definition of O!
= 1 should also be mentioned. It is desirable to bring students' attention to the 

other forms of , viz, and . 
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 Students are expected to be able to verify = and + = . 
In the latter part, teachers should guide students to start from L.H.S. and end up
with R.H.S. 
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 Examples like the one below can be given.  
Example  
Solve for n if  = C .  18
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 Teachers can ask students to expand (a + b)2, (a + b)3, (a + b)4 and (a + b)5 by
multiplication and fill the coefficients of the terms of the expanded expressions 
into the boxes below.  
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2.3 Expanding Binomials Using the 
 Pascal Triangle   
 
 
 
 
 
 
 
 
 
 

 2.4 Binomial Theorem for Positive 
 Integral Indices 
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 Teachers should guide students to discover that the coefficients can be 
expressed as  and the properties of the elements of the Pascal triangle such as

C , 1, =1  and +C =C . 
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 Students are expected to expand (a + b)n with the aid of Pascal triangle up
to and including n=5. 

The following examples are relevant. 

Example 1 

Expand 

(a) (2x+3)4 in descending powers of x, 

(b)  (3x2−1)5 in ascending powers of x. 

Example 2 

Find the term independent of x in the expansion of 5
2

3 )
3x

1(2x − . 

 Starting with the Pascal triangle, teachers can introduce binomial theorem
for positive integral indices. The proof of the theorem using mathematical 
induction is a good exercise for the students. Students should discover for 
themselves that in expanding (x + y)n, 

(a)  there are (n+1) terms and  

(b)  the (r + 1)th term is xn
rC n-ryr, if the expansion is expressed in descending

powers of x. 
The determination of the greatest term and relations between coefficients are not
necessary. Examples such as the following can be given. 
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  Example 1 
Expand 
(a)  43y)(2x +

(b) 5)
x
2(3x − . 

Example 2 

Find the coefficient of x3 in the expansion of 56 x)(1x)
2
1(3 +⋅− . 

Example 3 
In the expansion of (1+ax)(1+bx)6, the coefficients of x and x2 are respectively
0 and 

4
21

− , find the values of a and b. 

 Although problems of multinomial expansion can be solved by repeated
binomial expansions, teachers should avoid teaching multinomial expansion 
beyond the trinomials. The following can be useful exercises. 

Example 4 

Expand  in ascending powers of x. 32 )3x2x(1 +−

Example 5 

Find the constant term in the expansion of 43x)
2x
1(1 −+ . 

    For abler students, teachers may mention that the binomial theorem is also
true for negative integral indices. Nevertheless, further development should be 
avoided. 
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